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Background: Early and accurate diagnosis of Parkinson disease (PD) is essential for enhancing 
patients’ quality of life and enabling more effective symptom management. Brain signal 
analysis, a non-invasive and reliable technique, provides an alternative or complementary 
method to traditional diagnostic approaches.

Objectives: This study aims to develop a diagnostic method for PD by combining signal 
processing techniques with machine learning (ML) algorithms.

Materials & Methods: Electroencephalography (EEG) signals were initially segmented into 
smaller windows using a windowing technique. The intrinsic mode functions (IMFs) were 
subsequently derived using the empirical mode decomposition (EMD) technique. The second-
order difference plot (SODP) method was applied to each IMF, and components with higher 
informational content were selected for feature extraction. These features were subsequently 
used to train a decision tree classifier. Various window lengths were evaluated to determine the 
optimal time window for feature extraction, with 4 seconds identified as the optimal duration.

Results: The proposed method was evaluated using the San Diego EEG dataset, which demonstrated 
state-of-the-art performance compared to existing studies. The classification accuracies achieved 
for various scenarios were as follows: 99.7% for open-eyes off–PD vs healthy controls (HCs), 
96.7% for open-eyes on–PD vs HC, and 98.54% for open-eyes off–PD vs on–PD.

Conclusion: The results underscore the strong potential of the proposed method in effectively 
addressing key classification challenges associated with Parkinson’s disease. 
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Introduction

arkinson disease (PD) is classified as 
a neurological illness that progresses 
gradually and can be diagnosed through 
a combination of motor and non-motor 
symptoms [1]. In people over 60, the 

prevalence of PD is increasing, currently affecting ap-
proximately 1% of this population [2]. Neurological 
disorders are presently the leading cause of disability 
worldwide, and PD is considered the fastest-growing 
among them [3]. PD ranks as the second most preva-
lent neurodegenerative disorder and is marked by the 
permanent degeneration of dopamine-producing neu-
rons [4]. Therefore, PD is classified as a neurologi-
cal condition that progressively worsens over time. 
Among individuals affected by PD, the dopamine-pro-
ducing neurons within the substantia nigra first exhibit 
functional decline before degenerating. This neuronal 
degeneration impairs the brain’s ability to control body 
movements. Symptoms include tremors, akinesia (ab-
sence of voluntary movement), bradykinesia (slow-
ness of movement), and difficulties with walking and 
posture [5]. In the absence of clear motor symptoms, 
diagnosing the disease can be challenging. Therefore, 
computer-aided detection systems can automatically 
detect PD using electroencephalogram [6].

Given the challenges in the early diagnosis of PD and 
the progressive decline in motor control, numerous 
studies have focused on developing machine learning 
(ML)-based diagnostic methods. For instance, Aljalal 
et al. applied the discrete wavelet transform to analyze 
electroencephalography (EEG) signals from the San 
Diego and University of New Mexico (UNM) datasets 
in combination with various entropy-based measures. 
Subsequently, ML algorithms were used to differentiate 
patients with PD from healthy controls (HCs) [7].

Srikanth et al. employed a feature extraction method 
based on ensemble empirical mode decomposition 
(EMD) to enhance the accuracy of PD diagnosis. A 
range of ML and deep learning classification models 

were evaluated, with Convolutional Neural Networks 
(CNNs) yielding the highest accuracy of 98% [8]. Go-
vindu and Palwe applied ML techniques to voice data 
features (MDVP 30) to classify patients with PD using 
a random forest model. This model was compared with 
support vector machine (SVM) and K nearest neighbors 
(KNN), and logistic regression classifiers, achieving an 
accuracy of 91.83% [9]. Hussain et al. used audio data 
to classify PD with SVM, random forest, and KNN 
models, validated through k-fold cross-validation. These 
studies emphasize the effectiveness of ML approaches in 
PD detection [10] .

Table 1 provides a summary of the related studies and 
their results. This study proposes a robust time-domain 
approach for PD detection. The method improves di-
agnostic performance using EEG-based brain signals 
by enhancing the feature extraction and feature selec-
tion stages within ML pipelines [11]. EEG signals are 
segmented using a windowing technique, and EMD is 
applied to extract intrinsic mode functions (IMFs). A 
nonlinear time series analysis method is applied to each 
IMF, and components with higher informational content 
are selected for feature extraction. These features are ob-
tained from all EEG channels and used to train a decision 
tree classifier for final classification.

The proposed method was evaluated using the San Di-
ego dataset, which demonstrated remarkable accuracy in 
classifying different conditions of patients with PD. The 
experimental results are analyzed and discussed in detail 
in this paper’s “results” and “discussion” sections.

Materials and Methods

The flowchart of the presented approach aimed at 
improving the performance of PD diagnosis based on 
brain signals is shown in Figure 1. Initially, The data 
are split into two distinct sets: One for training and the 
other for testing. A windowing technique is then uti-
lized on the training data to divide it into smaller seg-
ments, where the window length significantly influ-
ences system performance.

P

Highlights 

• A novel approach is proposed to enhance both the feature extraction and selection processes within a ML framework 
for PD detection using EEG signals.

• The proposed method demonstrates superior classification accuracy, underscoring its effectiveness and strong po-
tential in addressing diverse classification challenges associated with PD diagnosis.
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Following segmentation, EMD is applied to decom-
pose the signal into multiple components. Subsequently, 
features are extracted from these segments using the 
second-order difference plot (SODP) method and are 
later employed to train the classifier. Once classifica-
tion accuracy is obtained, the windowing parameters are 
assessed, and the window size yielding the best perfor-
mance is selected.

Finally, the optimal parameters derived from the train-
ing phase are applied to the test data to evaluate the 
overall system performance. The following sections of 

this paper provide a detailed discussion of the dataset, 
methodology, and experimental results.

Dataset and pre-processing

The method proposed in this study was evaluated us-
ing the San Diego dataset [16], which includes demo-
graphic and clinical information of the participants, 
as summarized in Table 2. EEG data were acquired 
using a 32-channel system over a minimum duration 
of three minutes, with a sampling rate of 512 Hz. The 
electrode placement used for EEG acquisition is pre-
sented in Table 2.

Table 1. A summary of the articles, research conducted, and their results

Ref. Feature Extraction 
Method Classification Dataset Validation (Test 

Data) Accuracy (%)

Singh et al. 
2016 [12]

PCA (principal component 
analysis)

SVM
dual classification
multi-class clas-

sification

PPMI
Training 90%

Test 10%

K-fold (10-fold 
cross-validation)

More than 90% of 
dual classes

More than 85% of 
multi-class clas-

sification

Khare et al. 
2021 [13]

Wavelet transform + statis-
tical actions SVM

San Diego
PD (15 people) - 96.13%
HC (16 people)

Shi et al. 2022 
[14]

Radiomics two-sample 
t-tests

SVM

MRI images

PD (123 people) K-fold (5-fold 
cross-validation) 78.07%

RFE (recursive feature 
removal) HC (90 people)

Lamba et al. 
2022 [15]

Extra tree Naive Bayes Speech data in the 
UCI ML repository 

PD (23 people)
K-fold (10-fold 

cross-validation)

Combination of 
genetic algorithm 
and random forest 

classification:
95.58%

Genetic algorithm KNN

Mutual information gain Random forest
HC (8 persons)

Abbreviations: PD: Parkinson disease; HC: Healthy control; SVM: support vector machine; KNN: K nearest K nearest neigh-
bors; MRI: Magnetic resonance imaging; PPMI: Parkinson’s progression markers initiative.

Figure 1. Block diagram of the optimized EEG signal processing and classification framework
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Feature extraction

EMD 

EMD is a flexible technique for obtaining time-fre-
quency information from a signal. It breaks down the 
signal into IMF components. The original signal is 
processed using a specialized technique known as the 
screening process to extract the IMFs [17-19]. Accord-
ingly, the original signal is represented as illustrated in 
Equation 1:
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An IMF refers to a numerical or analytical function that 
meets the following criteria:

a) The number of local extrema and zero crossings 
must be either equal or differ by no more than one,

b) The integral of the function over the defined time 
interval is zero, indicating that the mean of the envelope 
formed by the local maxima and the envelope formed by 
the local minima is zero at every point.

The extraction of IMFs, also known as the screening 
process, is an iterative procedure consisting of the fol-
lowing steps:

1) The local maxima and minima within the input sig-
nal x(t) are first detected.

2) The upper and lower envelopes are generated by in-
terpolating through the local maxima and minima points, 
respectively.

3) The mean values of the upper and lower envelopes 
are computed using Equation 2.
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4) Creating the first component of the signal according 
to Equation 3:
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5) Investigating the conditions of the IMFs and mea-
suring the stopping based on the Equation 4:
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6) If condition 5 does not appear, replace the signal 
from stage 4 with the main signal and continue from 
stage 1.

Table 2. Dataset description and key features (San Diego) utilized in this study

Dataset 

Parkinson Disease HC 

Total 
No.

Mean±SD State
Total 
No.

Mean±SD State

Age (y) Off On Open 
Eyes

Closed 
Eyes Age (y) Open 

Eyes
Closed 
Eyes

San Diego 15 63.2 Yes Yes Yes No 16 63.5 Yes No
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7) If condition 6 is met, the screening process is over 
and is considered the first inherent mode function.

8) Suppose the remaining part satisfies the conditions 
of the IMFs. In that case, an IMF is considered, and in 
the absence of condition a, it is accepted as the initial sig-
nal, and steps 1 to 4 are repeated; otherwise, the equation 
[5] is considered as the remainder:
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The above steps are performed times until IMF is ob-
tained.

SODP 

This method analyzes time series with nonlinear char-
acteristics [20]. This method displays a graph of consec-
utive rates against each other. We can extract useful diag-
nostic information using the SODP of the IMFs of EEG 
signals [21]. In this part, the SODP diagram for plotting 
X(n) vs Y(n) is defined by the following equations:
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By using central tendency measurement, we can mea-
sure variability in this chart and, by reducing the sam-
pling distance, appropriately scale the rates and get clos-
er to continuous data results [22]. The SODP related to 
IMFs shows the EEG signals of elliptical shapes [21]. To 
determine the confidence region of SODP from IMFs, 
we use the following relationships:
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The parameter and the area of the ellipse are calculated 
as follows:
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Classification

Decision tree classifier

Decision trees are widely used in ML as an effective 
method for classifying and organizing data into distinct 
categories [23]. This approach relies on a hierarchical, 
tree-based structure, where each path originates from 
the root node and proceeds through a sequence of data 
splits until a binary decision is reached at a leaf node 
[24]. The core concept behind decision trees is to itera-
tively answer a series of binary (yes/no) questions to 
reach a classification outcome [25-27]. The Gini index 
and entropy are commonly used criteria for evaluating 
decision tree performance [28].

Decision trees are an effective tool in ML [23] used to 
classify and organize data into categories. This classifica-
tion method employs a tree-based structure, where each 
path originates at the root node and follows a sequence of 
data-driven splits until a Boolean outcome is reached at a 
leaf node [24]. The main concept of the decision tree is to 
answer questions with yes or no options [25, 26].

Results

As illustrated in Figure 1, this study explores the effect 
of time window selection on feature extraction, aiming 
to determine the most appropriate window length for the 
dataset utilized. The analysis begins with an initial win-
dow length of 2 seconds. The EEG signals are processed 
within each window using EMD to extract their corre-
sponding IMFs.

IMFs are crucial for signal analysis, as they represent 
intrinsic components of the signal across distinct fre-
quency bands. Each IMF encapsulates localized oscil-
latory behavior that reflects the inherent characteristics 
of the original signal. Due to these properties, IMFs are 
particularly effective in analyzing complex and nonlin-
ear signal patterns.

Moreover, IMFs facilitate extracting meaningful in-
formation from signals, support the analysis of tem-
poral dynamics, and contribute to noise reduction and 
anomaly detection. In this study, the extracted IMFs are 
integral to evaluating the influence of time window se-
lection on signal analysis and improving the accuracy of 
feature extraction.

Figure 2 illustrates a segment of the EEG signal from 
a single channel alongside its corresponding IMFs. The 
next step involves extracting features from the first three 
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IMFs selected for this analysis based on their relevance 
to the signal's dominant oscillatory components. The 
SODPs of these IMFs, also shown in Figure 2, reveal 
elliptical patterns. These elliptical shapes emerge from 
strong correlations between successive data points with-
in the initial IMFs, indicating consistent temporal struc-
ture in the underlying signal.

The elliptical patterns observed in the SODPs arise be-
cause the initial IMFs typically contain high-frequency 
and high-amplitude components, which result in more 
regular and predictable signal fluctuations. Specifically, 
the SODP for each IMF captures sequential variations—
ie, second-order differences—within a two-dimensional 
space. When an IMF’s frequency and amplitude charac-
teristics are consistent, the resulting SODP points cluster 
into distinct elliptical shapes.

This observed ellipticity provides a strong basis for dis-
criminating between different classes within the dataset, 
significantly contributing to the high classification ac-
curacy achieved by the proposed method. Accordingly, 
features were extracted from the first three IMFs, which 
exhibited the most prominent elliptical patterns. Param-
eters a and b, derived from Equations 10 and 11, were 
obtained from the respective SODP plots and used as 
discriminative features.

This feature extraction process was applied across all 
EEG channels, and the resulting feature set was used to 
train a decision tree classifier. The classifier’s perfor-
mance was evaluated on a separate test set after training 
on the designated training subset. A 10-fold cross-vali-
dation procedure (with k=10) was employed to ensure 

robustness and minimize bias. This approach partitions 
the dataset into 10 equal subsets, cyclically alternating 
between training and testing to maximize the utilization 
of available data.

The entire procedure was repeated for various time 
window lengths to identify the optimal duration for 
feature extraction in each classification scenario. This 
iterative strategy ensures the selection of the most effec-
tive window size, thereby enhancing the robustness and 
overall accuracy of the proposed method.

The following classification problems were consid-
ered for the San Diego dataset to assess the effectiveness 
of the proposed method. Three classification problems 
were defined for this dataset:

P1) Open-eyes condition (Off-PD vs HC): During the 
eyes-open state, distinguish between PD patients off 
medication and the HC group

P2) Open-eyes condition (On-PD vs HC): Differenti-
ating on-medication PD patients from HCs during the 
eyes-open state

P3) Open-eyes off–PD vs on-PD: With open eyes, dis-
tinguish between PD patients off medication and those 
on medication

Figure 2. Right) Decomposition of the original signal into the IMFs, Left) The SODP of IMFs for a healthy subject of channel CZ
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Discussion

In this study, the window length was systematically var-
ied to determine the optimal time window for feature ex-
traction across various classification tasks, starting from 
2 s and increasing in 1-s increments to a maximum of 8 
seconds. For instance, in the case of a 2-s time window, 
the EEG signals were segmented into non-overlapping 
2-s intervals, and the proposed features were extracted 
from each segment. These features were subsequently 
used to train the classifier.

This incremental strategy allows for a systematic eval-
uation of window lengths to achieve an optimal balance 
between feature richness and computational efficiency.

For the first classification task—distinguishing be-
tween the open-eyes off-medication PD group and 
HC—the EEG signals from each channel were initially 
filtered between 0.5 Hz and 40 Hz. The filtered signals 
were then segmented into non-overlapping 2-s windows. 
This segmentation process yielded 3030 segments for 
this classification task, comprising 1,500 segments from 
PD patients and 1530 from HCs.

Subsequent sections evaluate classification perfor-
mance across multiple tasks using the proposed meth-
odology. Table 3 summarizes the classification scenarios 
addressed in this study. As described previously, the 
performance of each classification model was assessed 
using 10-fold cross-validation. For each time window 
and classification scenario, the average accuracy across 
the ten folds and the standard deviation (reported as 
Mean±SD) were computed and reported.

As illustrated in Table 3, the proposed method attained 
the highest classification accuracy when using a segment 
duration of 4 seconds. Specifically, for the classification 
task distinguishing open-eyes on-medication PD (on–
PD) from HCs, the method performed optimally with 
4-s segments—consistent with the results observed in 
the previous classification scenario.

The same table also reports results for classifying open-
eyes off-medication PD (off–PD) versus on–PD. Once 
again, the highest accuracy was achieved using 4-second 
segments. These consistent outcomes across different 
tasks further validate the effectiveness of 4-second win-
dows as the optimal choice for feature extraction within 
the proposed framework.

Following the performance evaluation, a comparative 
analysis was conducted between the results obtained us-
ing the proposed method and those reported in previous 
studies that utilized the same dataset and achieved no-
table performance. As illustrated in Table 4, the proposed 
method outperformed existing approaches regarding 
classification accuracy across all evaluated tasks. This 
comparison underscores the robustness and competitive 
advantage of the proposed approach in achieving supe-
rior classification performance.

Conclusion

This study introduced a novel approach for diagnosing 
PD through brain signal analysis, integrating advanced 
signal processing techniques with ML. The proposed 
method demonstrated exceptional classification perfor-
mance across multiple clinical states of Parkinson’s pa-

Table 3. Classification accuracy across different problems

Segment Duration (Second) Off–PD vs HC On–PD vs HC Off–PD vs On-PD

2 96.44.3 92.35.6 95.33.6

3 96.85.3 94.25.3 96.84.5

4 99.74.1 96.74.7 98.543.3

5 98.35.3 96.34.8 97.34.5

6 95.45.6 95.8 97.14.2

7 95.2 94.24.7 96.34.6

8 94.8 93.85.3 95.84.5

Abbreviations: HC: Healthy control; PD: Parkinson disease; On–PD: Open-eyes on-medication PD; Off–PD: Open-eyes off-
medication PD. 
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tients. Specifically, the approach achieved classification 
accuracies of 99.7% for open-eyes off–PD vs HC, 96.7% 
for open-eyes on–PD vs HC, and 98.54% for open-eyes 
off–PD vs on–PD, highlighting its capacity to extract 
and interpret critical information from EEG signals.

The methodology employed EMD in combination 
with nonlinear dynamic analysis via the SODP to derive 
meaningful and discriminative features. The targeted 
use of the first three IMFs and selecting a 4-second time 
window were instrumental in enhancing classification 
accuracy and computational efficiency. The decision tree 
classifier, acting as the core classification model, demon-
strated strong performance distinguishing between class-
es through its interpretable and rule-based architecture.

These findings validate the effectiveness of the pro-
posed framework in facilitating early and accurate de-
tection of PD and underscore its potential for integration 
into AI-powered clinical decision support systems. Al-
though the approach was evaluated using the San Diego 
EEG dataset, future work should assess its generaliz-
ability across more heterogeneous datasets and in real-
world clinical environments. Furthermore, combining 
this methodology with other emerging diagnostic tools 
could significantly enhance the precision and scope of 
PD diagnosis and management.
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Table 4. Comparing the obtained results with state-of-the-art approaches in resting-state conditions

Ref. Feature Extrac-
tion Methods Classifier Dataset Classification Problem Classification Accuracy 

(%)

[13] WR SVM San Diego Off–PD vs HC On–PD 
vs HC 96.13, 97.65

[29] CSP + LogEn KNN, SVM San Diego
Off–PD vs on–PD,

On–PD vs HC, off–PD 
vs HC

97.52, 95.76, 99.41

[30] - ANN San Diego Off–PD vs HC 98

[31] - GNN San Diego On–PD vs HC 69, 4

Proposed method EMD + WSODP Decision tree San Diego Off–PD vs on–PD, On–
PD vs HC, off–PD vs HC 98.54, 96.7, 99.7

Abbreviations: HC: Healthy control; PD: Parkinson disease; On–PD: Open-eyes on-medication PD; Off–PD: open-eyes off-
medication PD; SVM: Support vector machine; KNN: K Nearest Neighbors; WR: Wavelet-based representation; CSP: Common 
spatial pattern; EMD: Empirical mode decomposition; ANN: Artificial neural network; GNN: Graph neural network; WSODP: 
Windowed second-order difference plot.
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