July 2025, Volume 11, Issue 3, Number 42

Caspian Journal of Neurological Sciences
""Caspian J Neurol Sci'"

Journal Homepage: http://cjns.gums.ac.ir

Research Paper ®
Optimized Time-domain Feature Extraction for Early
Onset Diagnosis of Parkinson Disease From EEG Signals

Delshad Ghavami' (9, Moein Radman? (9, Ali Chaibakhsh**

1. Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran.
2. Brain-Computer Interfacing and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, Colchester, England.
3. Intelligent Systems and Advanced Control Lab, Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran.

Use your device to scan

and read the rtice oiine ($TETTT Ghavami D, Radman M, Chaibakhsh A. Optimized Time-domain Feature Extraction for Early Onset Diagnosis of Parkin-
3 son Disease From EEG Signals Caspian J Neurol Sci. 2025; 11(3):213-222. https://doi.org/10.32598/CINS.11.42.461.3

COLLIG R Optimized EEG Feature Extraction for Parkinson Detection
https://doi.org/10.32598/CINS.11.42.461.3

ABSTRACT

Copyright © 2025 The Author(s);

This is an open access article distributed
under the terms of the Creative Commons +

Background: Early and accurate diagnosis of Parkinson disease (PD) is essential for enhancing
patients’ quality of life and enabling more effective symptom management. Brain signal

Attribution  License (CC-By-NC: htps:/ +  analysis, a non-invasive and reliable technique, provides an alternative or complementary
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and reproduction in any medium, provided the = Objectives: This study aims to develop a diagnostic method for PD by combining signal
original work is properly cited and isnotused @  processing techniques with machine learning (ML) algorithms.

for commercial purposes.

Materials & Methods: Electroencephalography (EEG) signals were initially segmented into
smaller windows using a windowing technique. The intrinsic mode functions (IMFs) were
subsequently derived using the empirical mode decomposition (EMD) technique. The second-
order difference plot (SODP) method was applied to each IMF, and components with higher
informational content were selected for feature extraction. These features were subsequently
used to train a decision tree classifier. Various window lengths were evaluated to determine the
optimal time window for feature extraction, with 4 seconds identified as the optimal duration.

Results: The proposed method was evaluated using the San Diego EEG dataset, which demonstrated
state-of-the-art performance compared to existing studies. The classification accuracies achieved

Article info: for various scenarios were as follows: 99.7% for open-eyes off-PD vs healthy controls (HCs),
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* Anovel approach is proposed to enhance both the feature extraction and selection processes within a ML framework

for PD detection using EEG signals.

* The proposed method demonstrates superior classification accuracy, underscoring its effectiveness and strong po-
tential in addressing diverse classification challenges associated with PD diagnosis.

Introduction

arkinson disease (PD) is classified as

a neurological illness that progresses

gradually and can be diagnosed through

a combination of motor and non-motor

symptoms [1]. In people over 60, the
prevalence of PD is increasing, currently affecting ap-
proximately 1% of this population [2]. Neurological
disorders are presently the leading cause of disability
worldwide, and PD is considered the fastest-growing
among them [3]. PD ranks as the second most preva-
lent neurodegenerative disorder and is marked by the
permanent degeneration of dopamine-producing neu-
rons [4]. Therefore, PD is classified as a neurologi-
cal condition that progressively worsens over time.
Among individuals affected by PD, the dopamine-pro-
ducing neurons within the substantia nigra first exhibit
functional decline before degenerating. This neuronal
degeneration impairs the brain’s ability to control body
movements. Symptoms include tremors, akinesia (ab-
sence of voluntary movement), bradykinesia (slow-
ness of movement), and difficulties with walking and
posture [5]. In the absence of clear motor symptoms,
diagnosing the disease can be challenging. Therefore,
computer-aided detection systems can automatically
detect PD using electroencephalogram [6].

Given the challenges in the early diagnosis of PD and
the progressive decline in motor control, numerous
studies have focused on developing machine learning
(ML)-based diagnostic methods. For instance, Aljalal
et al. applied the discrete wavelet transform to analyze
electroencephalography (EEG) signals from the San
Diego and University of New Mexico (UNM) datasets
in combination with various entropy-based measures.
Subsequently, ML algorithms were used to differentiate
patients with PD from healthy controls (HCs) [7].

Srikanth et al. employed a feature extraction method
based on ensemble empirical mode decomposition
(EMD) to enhance the accuracy of PD diagnosis. A
range of ML and deep learning classification models

were evaluated, with Convolutional Neural Networks
(CNNs) yielding the highest accuracy of 98% [8]. Go-
vindu and Palwe applied ML techniques to voice data
features (MDVP 30) to classify patients with PD using
a random forest model. This model was compared with
support vector machine (SVM) and K nearest neighbors
(KNN), and logistic regression classifiers, achieving an
accuracy of 91.83% [9]. Hussain et al. used audio data
to classify PD with SVM, random forest, and KNN
models, validated through k-fold cross-validation. These
studies emphasize the effectiveness of ML approaches in
PD detection [10] .

Table 1 provides a summary of the related studies and
their results. This study proposes a robust time-domain
approach for PD detection. The method improves di-
agnostic performance using EEG-based brain signals
by enhancing the feature extraction and feature selec-
tion stages within ML pipelines [11]. EEG signals are
segmented using a windowing technique, and EMD is
applied to extract intrinsic mode functions (IMFs). A
nonlinear time series analysis method is applied to each
IMF, and components with higher informational content
are selected for feature extraction. These features are ob-
tained from all EEG channels and used to train a decision
tree classifier for final classification.

The proposed method was evaluated using the San Di-
ego dataset, which demonstrated remarkable accuracy in
classifying different conditions of patients with PD. The
experimental results are analyzed and discussed in detail
in this paper’s “results” and “discussion” sections.

Materials and Methods

The flowchart of the presented approach aimed at
improving the performance of PD diagnosis based on
brain signals is shown in Figure 1. Initially, The data
are split into two distinct sets: One for training and the
other for testing. A windowing technique is then uti-
lized on the training data to divide it into smaller seg-
ments, where the window length significantly influ-
ences system performance.
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Table 1. A summary of the articles, research conducted, and their results
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Feature Extraction

Validation (Test

Ref. Method Classification Dataset Data) Accuracy (%)
VM More than 90% of
. - o PPMI dual classes
Singh et al. PCA (principal cpmponent dual c.lassn‘lcatlon Training 90% K-fold (}O-fc.)ld More than 85% of
2016 [12] analysis) multi-class clas- Test 10% cross-validation) lti-cl |
sification est 10% multi-class clas-
sification
h | Wavel ; San Diego
are etal. avelet transform + statis- PD (15 people) ) o
2021 [13] tical actions S Sl
HC (16 people)
Radiomics two-sample MRl images
i t-tests
Shi et al. 2022 SVM PD (123 people) K-fold (§—fq|d 78.07%
[14] ( ; cross-validation)
RFE (recursive feature
removal) HC (90 people)
Extra tree Naive Bayes Epée,\c,n_data ir?tthe Combination of
repository ; ;
Lamba et al. Genetic algorithm KNN K-fold (10-fold genetic algorithm
e and random forest
2022 [15] PD (23 people) cross-validation)

Mutual information gain

Random forest

classification:
95.58%

HC (8 persons)

Abbreviations: PD: Parkinson disease; HC: Healthy control; SVM: support vector machine; KNN: K nearest K nearest neigh-
bors; MRI: Magnetic resonance imaging; PPMI: Parkinson’s progression markers initiative.

Following segmentation, EMD is applied to decom-
pose the signal into multiple components. Subsequently,
features are extracted from these segments using the
second-order difference plot (SODP) method and are
later employed to train the classifier. Once classifica-
tion accuracy is obtained, the windowing parameters are
assessed, and the window size yielding the best perfor-
mance is selected.

Finally, the optimal parameters derived from the train-
ing phase are applied to the test data to evaluate the
overall system performance. The following sections of

Figure 1. Block diagram of the optimized EEG signal processing and classification framework

this paper provide a detailed discussion of the dataset,
methodology, and experimental results.

Dataset and pre-processing

The method proposed in this study was evaluated us-
ing the San Diego dataset [16], which includes demo-
graphic and clinical information of the participants,
as summarized in Table 2. EEG data were acquired
using a 32-channel system over a minimum duration
of three minutes, with a sampling rate of 512 Hz. The
electrode placement used for EEG acquisition is pre-
sented in Table 2.

Ghavami D, et al. Optimized EEG Feature Extraction for Parkinson Detection. Caspian J Neurol Sci. 2025; 11(3):213-222.
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Table 2. Dataset description and key features (San Diego) utilized in this study

Parkinson Disease HC
MeantSD State MeantSD State
Dataset Total o Closed Total P Closed
No. pen ose No. pen ose
Age (v) i S Eyes Eyes Age (y) Eyes Eyes
San Diego 15 63.2 Yes Yes Yes No 16 63.5 Yes No

Feature extraction
EMD

EMD is a flexible technique for obtaining time-fre-
quency information from a signal. It breaks down the
signal into IMF components. The original signal is
processed using a specialized technique known as the
screening process to extract the IMFs [17-19]. Accord-
ingly, the original signal is represented as illustrated in
Equation 1:

1. x@® = Sihi+y

An IMF refers to a numerical or analytical function that
meets the following criteria:

a) The number of local extrema and zero crossings
must be either equal or differ by no more than one,

b) The integral of the function over the defined time
interval is zero, indicating that the mean of the envelope
formed by the local maxima and the envelope formed by
the local minima is zero at every point.

The extraction of IMFs, also known as the screening
process, is an iterative procedure consisting of the fol-
lowing steps:

1) The local maxima and minima within the input sig-
nal x(t) are first detected.

2) The upper and lower envelopes are generated by in-
terpolating through the local maxima and minima points,
respectively.

3) The mean values of the upper and lower envelopes
are computed using Equation 2.

2. m(t) =S,(t) +S_(t)/2

4) Creating the first component of the signal according
to Equation 3:

3. () =x() —my ()

5) Investigating the conditions of the IMFs and mea-
suring the stopping based on the Equation 4:

R L S O R G)

2
Stoolnt™ @)

6) If condition 5 does not appear, replace the signal
from stage 4 with the main signal and continue from
stage 1.

Ghavami D, et al. Optimized EEG Feature Extraction for Parkinson Detection. Caspian J Neurol Sci. 2025; 11(3):213-222.
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7) If condition 6 is met, the screening process is over
and is considered the first inherent mode function.

8) Suppose the remaining part satisfies the conditions
of the IMFs. In that case, an IMF is considered, and in
the absence of condition a, it is accepted as the initial sig-
nal, and steps 1 to 4 are repeated; otherwise, the equation
[5] is considered as the remainder:

5. r = x(t) —ck

The above steps are performed times until IMF is ob-
tained.

sODP

This method analyzes time series with nonlinear char-
acteristics [20]. This method displays a graph of consec-
utive rates against each other. We can extract useful diag-
nostic information using the SODP of the IMFs of EEG
signals [21]. In this part, the SODP diagram for plotting
X(n) vs Y(n) is defined by the following equations:

6. X(n)=x(n+1)—xn)
7. X(n)=x(n+1) —x(n)

By using central tendency measurement, we can mea-
sure variability in this chart and, by reducing the sam-
pling distance, appropriately scale the rates and get clos-
er to continuous data results [22]. The SODP related to
IMFs shows the EEG signals of elliptical shapes [21]. To
determine the confidence region of SODP from IMFs,
we use the following relationships:

8. gy = /%Zx[n]Y[n]

The parameter and the area of the ellipse are calculated
as follows:

9. D= J(ui +u3) — 4(ukup — 13y

a=17321 [(u2+u2)+D

Ly 17321 (u2+u2)-D

63

12. Aellipse = mab
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Classification
Decision tree classifier

Decision trees are widely used in ML as an effective
method for classifying and organizing data into distinct
categories [23]. This approach relies on a hierarchical,
tree-based structure, where each path originates from
the root node and proceeds through a sequence of data
splits until a binary decision is reached at a leaf node
[24]. The core concept behind decision trees is to itera-
tively answer a series of binary (yes/no) questions to
reach a classification outcome [25-27]. The Gini index
and entropy are commonly used criteria for evaluating
decision tree performance [28].

Decision trees are an effective tool in ML [23] used to
classify and organize data into categories. This classifica-
tion method employs a tree-based structure, where each
path originates at the root node and follows a sequence of
data-driven splits until a Boolean outcome is reached at a
leaf node [24]. The main concept of the decision tree is to
answer questions with yes or no options [25, 26].

Results

As illustrated in Figure 1, this study explores the effect
of time window selection on feature extraction, aiming
to determine the most appropriate window length for the
dataset utilized. The analysis begins with an initial win-
dow length of 2 seconds. The EEG signals are processed
within each window using EMD to extract their corre-
sponding IMFs.

IMFs are crucial for signal analysis, as they represent
intrinsic components of the signal across distinct fre-
quency bands. Each IMF encapsulates localized oscil-
latory behavior that reflects the inherent characteristics
of the original signal. Due to these properties, IMFs are
particularly effective in analyzing complex and nonlin-
ear signal patterns.

Moreover, IMFs facilitate extracting meaningful in-
formation from signals, support the analysis of tem-
poral dynamics, and contribute to noise reduction and
anomaly detection. In this study, the extracted IMFs are
integral to evaluating the influence of time window se-
lection on signal analysis and improving the accuracy of
feature extraction.

Figure 2 illustrates a segment of the EEG signal from
a single channel alongside its corresponding IMFs. The
next step involves extracting features from the first three

Ghavami D, et al. Optimized EEG Feature Extraction for Parkinson Detection. Caspian J Neurol Sci. 2025; 11(3):213-222.
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Figure 2. Right) Decomposition of the original signal into the IMFs, Left) The SODP of IMFs for a healthy subject of channel C,

IMFs selected for this analysis based on their relevance
to the signal's dominant oscillatory components. The
SODPs of these IMFs, also shown in Figure 2, reveal
elliptical patterns. These elliptical shapes emerge from
strong correlations between successive data points with-
in the initial IMFs, indicating consistent temporal struc-
ture in the underlying signal.

The elliptical patterns observed in the SODPs arise be-
cause the initial IMFs typically contain high-frequency
and high-amplitude components, which result in more
regular and predictable signal fluctuations. Specifically,
the SODP for each IMF captures sequential variations—
ie, second-order differences—within a two-dimensional
space. When an IMF’s frequency and amplitude charac-
teristics are consistent, the resulting SODP points cluster
into distinct elliptical shapes.

This observed ellipticity provides a strong basis for dis-
criminating between different classes within the dataset,
significantly contributing to the high classification ac-
curacy achieved by the proposed method. Accordingly,
features were extracted from the first three IMFs, which
exhibited the most prominent elliptical patterns. Param-
eters a and b, derived from Equations 10 and 11, were
obtained from the respective SODP plots and used as
discriminative features.

This feature extraction process was applied across all
EEG channels, and the resulting feature set was used to
train a decision tree classifier. The classifier’s perfor-
mance was evaluated on a separate test set after training
on the designated training subset. A 10-fold cross-vali-
dation procedure (with k=10) was employed to ensure

robustness and minimize bias. This approach partitions
the dataset into 10 equal subsets, cyclically alternating
between training and testing to maximize the utilization
of available data.

The entire procedure was repeated for various time
window lengths to identify the optimal duration for
feature extraction in each classification scenario. This
iterative strategy ensures the selection of the most effec-
tive window size, thereby enhancing the robustness and
overall accuracy of the proposed method.

The following classification problems were consid-
ered for the San Diego dataset to assess the effectiveness
of the proposed method. Three classification problems
were defined for this dataset:

P1) Open-eyes condition (Off-PD vs HC): During the
eyes-open state, distinguish between PD patients off
medication and the HC group

P2) Open-eyes condition (On-PD vs HC): Differenti-
ating on-medication PD patients from HCs during the
eyes-open state

P3) Open-eyes off-PD vs on-PD: With open eyes, dis-
tinguish between PD patients off medication and those
on medication

Ghavami D, et al. Optimized EEG Feature Extraction for Parkinson Detection. Caspian J Neurol Sci. 2025; 11(3):213-222.
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Table 3. Classification accuracy across different problems

July 2025, Volume 11, Issue 3, Number 42

Segment Duration (Second) Off—-PD vs HC On-PD vs HC Off-PD vs On-PD
2 96.44.3 92.35.6 95.33.6
3 96.85.3 94.25.3 96.84.5
4 99.74.1 96.74.7 98.543.3
5 98.35.3 96.34.8 97.34.5
6 95.45.6 95.8 97.14.2
7 95.2 94.24.7 96.34.6
8 94.8 93.85.3 95.84.5

Abbreviations: HC: Healthy control; PD: Parkinson disease; On-PD: Open-eyes on-medication PD; Off-PD: Open-eyes off-

medication PD.

Discussion

In this study, the window length was systematically var-
ied to determine the optimal time window for feature ex-
traction across various classification tasks, starting from
2 s and increasing in 1-s increments to a maximum of 8
seconds. For instance, in the case of a 2-s time window,
the EEG signals were segmented into non-overlapping
2-s intervals, and the proposed features were extracted
from each segment. These features were subsequently
used to train the classifier.

This incremental strategy allows for a systematic eval-
uation of window lengths to achieve an optimal balance
between feature richness and computational efficiency.

For the first classification task—distinguishing be-
tween the open-eyes off-medication PD group and
HC—the EEG signals from each channel were initially
filtered between 0.5 Hz and 40 Hz. The filtered signals
were then segmented into non-overlapping 2-s windows.
This segmentation process yielded 3030 segments for
this classification task, comprising 1,500 segments from
PD patients and 1530 from HCs.

Subsequent sections evaluate classification perfor-
mance across multiple tasks using the proposed meth-
odology. Table 3 summarizes the classification scenarios
addressed in this study. As described previously, the
performance of each classification model was assessed
using 10-fold cross-validation. For each time window
and classification scenario, the average accuracy across
the ten folds and the standard deviation (reported as
Mean+SD) were computed and reported.

As illustrated in Table 3, the proposed method attained
the highest classification accuracy when using a segment
duration of 4 seconds. Specifically, for the classification
task distinguishing open-eyes on-medication PD (on—
PD) from HCs, the method performed optimally with
4-s segments—consistent with the results observed in
the previous classification scenario.

The same table also reports results for classifying open-
eyes off-medication PD (off-PD) versus on—PD. Once
again, the highest accuracy was achieved using 4-second
segments. These consistent outcomes across different
tasks further validate the effectiveness of 4-second win-
dows as the optimal choice for feature extraction within
the proposed framework.

Following the performance evaluation, a comparative
analysis was conducted between the results obtained us-
ing the proposed method and those reported in previous
studies that utilized the same dataset and achieved no-
table performance. As illustrated in Table 4, the proposed
method outperformed existing approaches regarding
classification accuracy across all evaluated tasks. This
comparison underscores the robustness and competitive
advantage of the proposed approach in achieving supe-
rior classification performance.

Conclusion

This study introduced a novel approach for diagnosing
PD through brain signal analysis, integrating advanced
signal processing techniques with ML. The proposed
method demonstrated exceptional classification perfor-
mance across multiple clinical states of Parkinson’s pa-

Ghavami D, et al. Optimized EEG Feature Extraction for Parkinson Detection. Caspian J Neurol Sci. 2025; 11(3):213-222.
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Table 4. Comparing the obtained results with state-of-the-art approaches in resting-state conditions

Feature Extrac-

Classification Accuracy

Ref. R lassifier D lassification Problem
e tion Methods Classifie ataset Classification Proble (%)
[13] WR SVM San Diego Off-PD vs HC On-PD 96.13,97.65
vs HC
Off-PD vs on—PD,
[29] CSP + LogEn KNN, SVM San Diego On—PD vs HC, off—PD 97.52,95.76,99.41
vs HC
[30] - ANN San Diego Off—PD vs HC 98
[31] - GNN San Diego On—PD vs HC 69, 4
Proposed method ~ EMD + WSODP Decision tree San Diego Off-PD vs on-PD, On— 98.54,96.7, 99.7

PD vs HC, off-PD vs HC

@)CINS

Abbreviations: HC: Healthy control; PD: Parkinson disease; On-PD: Open-eyes on-medication PD; Off-PD: open-eyes off-
medication PD; SVM: Support vector machine; KNN: K Nearest Neighbors; WR: Wavelet-based representation; CSP: Common
spatial pattern; EMD: Empirical mode decomposition; ANN: Artificial neural network; GNN: Graph neural network; WSODP:

Windowed second-order difference plot.

tients. Specifically, the approach achieved classification
accuracies 0of 99.7% for open-eyes off-PD vs HC, 96.7%
for open-eyes on—PD vs HC, and 98.54% for open-eyes
off-PD vs on—PD, highlighting its capacity to extract
and interpret critical information from EEG signals.

The methodology employed EMD in combination
with nonlinear dynamic analysis via the SODP to derive
meaningful and discriminative features. The targeted
use of the first three IMFs and selecting a 4-second time
window were instrumental in enhancing classification
accuracy and computational efficiency. The decision tree
classifier, acting as the core classification model, demon-
strated strong performance distinguishing between class-
es through its interpretable and rule-based architecture.

These findings validate the effectiveness of the pro-
posed framework in facilitating early and accurate de-
tection of PD and underscore its potential for integration
into Al-powered clinical decision support systems. Al-
though the approach was evaluated using the San Diego
EEG dataset, future work should assess its generaliz-
ability across more heterogencous datasets and in real-
world clinical environments. Furthermore, combining
this methodology with other emerging diagnostic tools
could significantly enhance the precision and scope of
PD diagnosis and management.
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